Pages

Monday, July 28, 2014

Homogeneous System of Linear Equations

A system is said to be homogeneous if all of the constant terms are zero. For a example, a homogeneous system of m equations in n variables has the form:
\begin{alignat}{7}
a_{11} x_1 &&\; + \;&& a_{12} x_2 &&\; + \cdots + \;&& a_{1n} x_n &&\; = \;&&& 0 \\
a_{21} x_1 &&\; + \;&& a_{22} x_2 &&\; + \cdots + \;&& a_{2n} x_n &&\; = \;&&& 0 \\
\vdots\;\;\; &&     && \vdots\;\;\; &&              && \vdots\;\;\; &&     &&& \,\vdots \\
a_{m1} x_1 &&\; + \;&& a_{m2} x_2 &&\; + \cdots + \;&& a_{mn} x_n &&\; = \;&&& 0. \\
\end{alignat}

Example

0 comments:

Post a Comment